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GIANT MOLECULE INTERACTIONS* 

S.P. McGLYNN and G.L. FINDLEY 

Choppin Chemical Laboratories, Louisiana State Universi@, Baton Rouge, LA 70803 (U.S.A.) 

Molecular Rydberg states are discussed from the point of view of atomic 
physics, the appropriate molecular extensions being provided where necessary. 
The interactions of Rydberg states with each other, with intravalence excitations 
and with their environment are elaborated. A further subdivision is made into 
channel interactions, strong perturbations and external field effects. By these 
means it is possible to discuss the molecular Rydberg regime, even at small n, in 
ways which are remarkably similar to those pertinent to the atom, and hence to 
generate a coherent picture of the interesting and important area of very large 
molecules. 

1. Introduction 

1. I. Pertinence 
Giant atoms are currently of considerable concern. Little has been said, 

however, concerning giant molecules. Both are relevant to the development of 
future generations of weak field detectors and tunable microwave sensors. In 
addition, the study of electric and magnetic effects is often inhibited by the in- 
ability to generate high field strengths; however, such field effects may be simu- 
lated in giant species with relatively small field strengths. Field effect studies are 
obviously of great concern in astrophysics, plasma physics, photophysics and 
photochemistry. In photochemistry, for example, electrons are so readily removed 
from giant systems that novel chemistry must surely result: certain charge transfer 
to solvent (CTTS) reactions are presumably mediated by such giant states. These 
states are also of compelling theoretical interest because they demand better 
formulation of the core-peel separability problem. Finally, the resonance phe- 
nomenon, itself a facet of the Rydberg (R) structure, must surely stimulate new 
approaches both to rate problems and to questions concerning the ability of an 
iv-electron system to support an additional electron (i.e. the negative ion prob- 
lem). 

1.2. Scope 
The characterization of molecular R transitions is embroiled in decisions 

concerning the meaning of the term “Rydberg”. In atomic physics an R transi- 
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tion occurs whenever an electron is promoted from a ground state orbital to an 
upper state orbital possessing an aufbau quantum number greater than that of 
the valence shell, In molecular physics this intuitive clarity is lost in the inability 
to assign a “principal” quantum number to the valence shell, an inability par- 
tially alleviated by heuristic and ambiguous “united atom” arguments. 

Alternatively, we may define an R transition as any member of a series 
which obeys the Rydberg equation 

(1) 

where eP is the energy of that spectral feature thought to be thejth member of 
the ath R series converging on the ionization limit I and where Via is the effective 
quantum number. This characterization is empirically limited by the need for 
spectra which exhibit high resolution over large spectral regions; furthermore, it 
precludes interactions between R series. 

The third alternative is operational: in this case, we say quite simply that 
an R state is any state defined with respect to an asymptotically hydrogenic hamil- 
tonian. Several conclusions follow. 

(i) Energy spacings of R states decrease as l/3* a where + = nj’- pa 
(nj is an integer andpu, is the quantum defect). 

(ii) The average radius (r) of an R orbital is proportional to ya2. Hence, 
highly excited R states are spatially enormous, a characteristic embodied in the 
term “giant” molecule or atom. 

(iii) For a fixed core the spin-orbit coupling parameter 5 remains approxi- 
mately constant whereas the exchange integral K decreases at least as fast as 
l/v&*. Thus, the coupling regime index K/c is proportional to vi--k where k > 2, 
a result indicating that highly excited R states are in a pure (52, OJ) regime. 

We shall adopt the above “asymptotic definition” and then investigate the 
scope and limitations of the concomitant operational definitions (i) - (iii). In 
this context we define the following one-electron hamiltonian: 

H= 
I 

Ze2 
-- + Ka(r) + Km(r) + K,(w) + 

r 
(2) 

The first term in eqn. (2) contains the (radial) kinetic energy operator and the 
centrifugal barrier, while the second term is the Coulomb potential. V,, is the 
residual atomic potential and V, is the residual molecular potential; both of 
these potentials are short ranged, i.e. 

V,,(r,o) represents orbital+rbital and spin-orbital interactions- V,(r,u, Q) includes 
vibronic and spin-vibronic interactions. Finally, 3: represents any imposed ex- 
ternal field, whether electric, magnetic or molecular (i.e. condensed phase). This 
paper represents a justification of eqn. (2) for R states. In Section 2 we present 
an approximate treatment for V,, and V,,,, from the viewpoint of single-channel 
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quantum defect theory (SQDT). In Section 3 we refine this treatment and ex- 
tend it to include part of V,, by the introduction of multichannel quantum defect 
theory (MQDT) interactions. In Section 4 strong perturbations (Le. those per- 
turbations arising from V, and from anomalous exchange and spin-orbit coupling 
effects) are discussed. In addition, the importance and prevalence of Rydbere 
valence mixing is investigated. Finally, electric and magnetic field effects are 
treated in Section 5, while condensed media effects are discussed in Section 6. 

2. Single-channel quantum defect theory 

2.1. One-electron Coulomb problem 
We begin with the hydrogenic atom. The radiaI Schriidinger equation (in 

Rydberg units) is 

d” I(2 + 1) 
+ 2Z -- 

dr* r* 
7 + 2Ci 4(r) = 0 (3) 

where 

6 = - Z=/k= (4) 
and 

k = Vj for (5 < 0 
iy for c > 0 (5) 

The bound state (c < 0) wavefunctions are given by the regular Coulomb func- 
tionf which asymptotically is 

f - u(v,r) sinnv - v(v,r) cosxv (6) 

where u is a rising exponential and v is a falling exponential in r. Since the bound 
state wavefunctions must vanish as r + w, we find 

SinJzV = 0 (7) 

Thus Y = n where n is an integer and 

e = - Z2/n2 (8) 

2.2. Introduction of the residual atomic potential 
The Schrodinger equation for the residual atomic potential is 

d2 I(li- l)+= -- 
dr2 r2 

7 - 2Y,,(r) + 2tjf Fjf(r) = O 

Since V,,(r) is short ranged, this equation asymptotically reverts to eqn. (3) 
at distances greater than ro, the cut-off distance for V,,. In order to ensure 
smooth joining at P = ro, we find 

(9) 

Fj, = fj(r) COS Jqf.4~ - gj(r) Sin ~,U, (10) 
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Using the appropriate asymptotic forms forf and g, eqn. (10) becomes 

Fit - Uj(r) Sh{n(v +&I) -V,(r) COS{~(” -t PJI 

from which it follows that 

sin@(v +p[)} = 0 

or 

(11) 

(12) 

Vi = ni-p, 

From eqns. (4) and (5) then 

(13) 

E,=_ z2 
(nj -PtJ2 

Thus the Rydberg equation is established. 

(14) 

2.3. Introduc tiun uf the residual molecular potential 
The procedure of Section 2.2 can be extended to molecules if V, is 

indeed short ranged. This in turn implies a significant similarity between an atomic 
R spectrum and a molecular R spectrum if, in both instances, the total residual 
potential were very nearly the same. That this assumption is reasonable in some 
cases is established [l] for Xe-CHJ by a comparison of Figs. 1 and 2. 

Further information concerning the residual potentials may be gained 
through introduction of the phase amplitude method [3]. This ansatz transforms 
the Schrijdinger equation into two coupled first-order differential equations, 
thereby effecting the separation 

where ail (r) is an amplitude function whilepj,(r) is a quantum defect func- 
tion. Within the phase amplitude method it is possible to show that 

npjl (r) = 2w-‘j{V,.(r3 + V,,(r’)}[f;,(r’) cos{V,(r’N - 

- gjl (J, si++,(rl>)] 2 dr’ 
(16) 

where W is the wronskian of thef and g functions. 
If the residual potentials are negative and monotonically increasing, it fol- 

lows from eqn. (16) (and the detailed.structure of thef and g functions) that 

PI 

vjI -“(j-l)1 = =-1 

However, if the residual potentials are positive and monotonically decreasing [l] 

a$ -V(j-l)l 51 

This is illustrated for the rare gases (V,, = 0) in Fig. 3. Thus, we see that V,, is 
attractive for each of the rare gases. Application of this procedure to C&I [l] 
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Fig. 1. The autoionization spectrum of xenon between the 2P,,, and ‘P,,, ionization limits (adapted 
fromref.2).Theprimedsymbol nil’ distinguishesseriesconvergingon2Pl,2fromthoseconvergingonzPjl2. 
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Fig. 2. The absorption spectrum of CH,I between the ZE3,1 and *Eij2 ionization limits. The primed 
symbol nJ’ distinguishes series converging on ‘Elj2 from those converging on ‘E3,2. 

shows that V,, is repulsive forj < 2 but becomes negligible at largerj because 
of the dominance of r/r&) at larger r. The effect is even more pronounced for 
1 waves with 2 2 2 since, in this case, the centrifugal barrier acts to impose effec- 
tive spherical symmetry even on the molecular system [I]. 
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Fig. 3. A plot of Vjs -~+l)~for the nop6 ‘So ~JS~~%Z~S~/~ O,J = 1 series (2P5,2 core) of the rare gases 

(data taken from ref. 4). 

3. Multichannel quantum defect theory 

If two or more ionization limits are adjacent, two R series (one converging 
on each limit) may interact, presuming, of course, that each series has the same 
total angular momentum [S]. Of even more importance, a discrete state of one 
series may interact with the continuum of the other series thereby preionizing 
(autoionizing). A “channel” is the union of the discrete members of an R series 
with the continuum of the same series, and interactions such as those described 
above are known as multichannel interactions. That such interactions occur in 
xenon [6] and CHJ [ 1,7] is shown in Figs. 1 and 2: we see the characteristic 
Beutler-Fano [8 - 101 autoionization profiles in both systems. Within the 
MQDT, however, the similarities between xenon and CH31 can be further 
strengthened [ 1 l], as will now be shown. 

In the spectral region of interest in xenon and CH31 there are two ioniza- 
tion limits: I1 = 1(2P3,2 or 2E3,2) and Iz = 1(2P1,a or 2E,,2). Thus each level must 
be referenced to both ionization limits: 

E4,-4=I,-4 
Yl y2 

(17) 

Boundary conditions on the bound state wavefunctions impose a consistency 
constraint which, when coupled with eqn. (17), allows us to fit experimental data 
to a vl(modulo 1) versus v2(modulo 2) plot and thus to determine quantum 
defects [6, 10, 121. This procedure is illustrated in Fig. 4. The similarities be- 
tween the two plots are striking and further indicate the close relationship of the 
non-coulombic potential terms for xenon and CH& 

Finally, we note that manifestations of autoionization in polyatomic systems 
are known [13] which are more esoteric (e.g. J dependence and q reversal) than 
that discussed above. In addition, rotational and vibrational preionization and 
molecular predissociation have been treated in an MQDT format [lo, 14 - 161. 
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Fig. 4. Lu-Fano [6, 10, 121 plots for the discrete states of (a) xenon and (b) CHJ. The xenon plot 
is adapted from ref. 6. y1 and v1 are effective quantum numbers (modulo I) defined with respect 
to the first and second ionization potentials respectively (see text). The full diagonal lines are given 
by y1 = v2; the broken curves are plots of Ye, the functionality being defied by eqn. (17) of 
the text. The full curves are the loci of the consistency constraint mentioned in the text and discussed 
more fully in refs. 6 and 11. The data point notation is as follows: d = ds12(Z1); a = d&Z,); s = 

s~z(Z,); s’ = s~/z(Zz); d’ = &/z(Zz). 

4. Strong perturbations 

Most, if not all, of the strong perturbations considered here should be in- 
cluded within the channel framework of Section 3. Unfortunately, the theoretical 
basis for such an inclusion is not available for polyatomics and i% even incom- 
plete for diatomics [lo, 14 - 161. Indeed, even if the tactical approach were fully 
developed, considerations of the multichannel nature would require detailed high 
resolution data over large spectral ranges. Such data, unfortunately, are not often 
available. 

The general type of high resolution data covers small spectroscopic ranges 
(e.g. the first s complex of CH31 [ 171) and perturbations may be evident which, 
because of the narrow observational range, require discussion in terms of inter- 
actions within that range. Even in the MQDT, sudden perturbations may occur 
which, because of artificial restrictions on the number of interacting channels, 
simply cannot be treated within the channel framework. The above two types of 
perturbations are referred to here as strong perturbations not because they are 
strong but because they are (or appear to be) sudden and therefore in some sense 
dominating. 

As a result we now feel free to discuss a variety of strong perturbations of 
which at least one (i.e. spin-orbit coupling) has already been considered within 
the MQDT. 

4.1. Spin-orbit coupling 
We use the 5p 46s R excitation of HI as an example. It is found that the 

linear =C-I bond of alkyl, alkene and alkyne iodides dominates spin-orbit cou- 
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pling in these iodides and therefore that the HI considerations have a wider range 
of applicability than we might at first think. Indeed, because the spin-orbit cou- 
pling constants for chlorine, bromine or iodine are all much larger than that for 
&bon, these same considerations also apply to chlorides and bromides. 

The states which arise from the 5p -B 6s configurational excitation are 
shown in Fig. 5 in both the (A$) limit and the (sZ,w) limit. If the states shown in 
Fig. 5 are labelled 1,2,3 and 4 in order of increasing energy, then the inter- 
mediate coupling regime yields the following set [ 181 of energy differences aud 
intensity ratios: 

E(4) -E(2) = 

E(3) -E(l) = 

E(2)-E(1) = 

E(4) -E(3) = 

Here K is the exchange integral, < is the spin-orbit coupling constant (K = 
(5~6s 1 l/rLz 16~5~) and 5 = 4{ 5p 15 15~)) and ?(/?) is the absorptivity of the 
transition X += /!J. The ability of this model in fitting details of intermediate cou- 
pling in the simple halides is extensive [ 19, 201, as may be seen in Fig. 6. 

4.2. Vibronic and spin-vibronic coupling 
If q, Q and u represent sets of electron coordinates, atom coordinates and 

electron spin coordinates respectively, the spin-vibronic hamiltonian may be 
designated U(q, o, Q)_ If we assume that spin-orbit coupling is small, a Herz- 
berg-Teller expansion in the normal coordinates QK about the equilibrium nu- 
clear configuration Q o of a given electronic state yields 
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Fig. 5. Spin-orbit coupling in the . ..u2jr36s configuration of HI. 
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Fig. 6. A plot of dE,+, a = 1 and/? = 2, 3,4, vs. the exchange:spin-orbit ratio for various halides: 
-, theoretical curves (see Section 4.1); 0, 0, experimental data. 

Nq, 0, Q) =fb;Q")+H(q,a;Qo)+ f 

QK + ... (18) 

which, on truncation, may be written 

H(q,aQ) = He + H,, + H, + H,, (19) 

where H, is the Born-Oppenheimer electronic hamiltonian at configuration Q”, 
H,, is the spik-orbit hamiltonian (also at Q” ), H, and H,, (in obvious notations) 
are the vibronic and spin-vibronic hamiltonians and all coordinate dependences 
to the right of the semicolon are parametric. If the He-H,, separation is valid, 
then H,, c He and henceU, and H,, respectively are first and second order in 
nature. If H,, is large, it is advisable to rewrite eqn. (18) as 

H(q,u,Q) = H(q,a;Q”) + ~{m(w>QM2& Qtc (201 

in which case H,,, now the second term, is formally first order. 
In the MQDT, as presented in Section 3, the zeroth-order electronic and 

spin-orbit interactions are included in the channel formalism and they need not 
be considered here. However, the vibronic and spin-vibronic interactions are 
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TABLE 1 

1 n A A @,fl 
2 . I7 n n rz,z+,z- 
3 n .F+,z- 1+,x- n 
4 n n I7 n,r+,.z- 

not a part of the MQDT, at least as we have formalized it. Hence these effects 
can give rise to spectroscopic perturbations which are not only not accounted for 
within the MQDT but which can also confuse the entire MQDT deperturbational 
tactic. Thus it is very important to recognize vibronic and spin-vibronic intru- 
sions, particularly because these intrusions are both common and large. 

We again adopt the linear HI molecule as an exemplar of vibronic and spin- 
vibronic coupling. This molecule possesses only one normal vibrational mode, 
which forms a basis for the P representation of CL, . The extension to the CHSI 
molecule is accomplished here, for simplicity, by “permitting” HI to possess 
non-totally symmetric 17 normal modes. Thus in the group Cm,, the CH31 normal 
modes PI, Q2 ad Q3 = E+ and Pa, Qs and Qs c Xl. Consequently, we are now 
in a position to tabulate the representations of C,, for which the various vector 
collections form bases (Table 1) 

Now, in the (A ,S) regime (Table 1, second column) only the %+4 transi- 
tion, namely l_X+ --_, ‘n, is electric dipole allowed. In the (sZ,w) regime (Table 1, 
third column), spirr-orbit mixing of states 2 and 4 confers allowedness the x+ 2 
transition. The transitions X + 1 and z + 3, however, remain forbidden and 
retain this forbiddenness until vibronically coupled to either state 2 or state 4 by 
R normal modes (Table 1, fifth column). We thus have the interesting result that 
states 2 and 4 may be coupled in a nominally first-order way by totally symmetric 
modes, whereas states 1 and 3 can couple with either of states 2 and 4 in ways 
which are nominally second order, and that such coupling is mediated only by 
non-totally symmetric modes. An example [21] of 3-4 state coupling in CD31 
mediated by the Q6 mode is shown in Fig. 7. Examples [22] of 24 mixing 
abound. The matrix elements of the nominally first-order and second-order ef- 
fects are as follows: CzH5Br [22] (2-4 mixing), 145 cm-l; CNCl [23] (4-intra- 
valence mixing), 180 cm-l; CHJ [21] (34 mixing), 15 cm-l. 

5. Field effects 

5. I. Magnetic field effects 
The application of a magnetic field B introduces the Zeeman termNB = 

p *B (where p is the magnetic moment) into the hamiltonian. Given the normal 
bandwidths for polyatomic molecules, it is improbable that line splitting due to 
the Zeeman effect will be observed in such systems, at least for B S 20 T. The 
observation of Zeeman effects then devolves on the measurement of band shape 
differences, e.g. the measurement of magnetic circular dichroism (MCD) [24], 
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Fig. 7. Spin-vibronic doubling in CD31 mediated by tbe non-totally symmetric (LI symmetry) mode 
Q,. The interactions in this case occur between states 0 + 3 (va) and states 0 + 4 and are carried 
throughout the y2 progression of Q2 built on the transition 0 + 4. The aIternation in intensity is 
associated with a slight difference in the frequency v2 in states 3 and 4. The doubling is absent in 
CH31 because the increase in the v6 frequency in the fully protonated derivative destroys the near 
degeneracy. 

which is the difference in molecular absorptivity of left and right circularly polar- 
ized light in the presence of a magnetic field. The primary aim of such studies is 
to make state assignments. Unfortunately, difficulties intrude_ For example, ,u is 
different in the various molecular spin-orbit limits of which, in contrast with the 
atom, there are more than two (Le. (A,S) and (52,~)). Indeed, the only well- 
defined quantum number is a resultant of molecular rotational and electronic 
motions. The situation, then, is very complicated in a diatomic molecule; in a 
polyatomic molecule, because of large coriolis effects it can become even worse. 

It has been shown [20,25], however, that MCD can lead to rather precise 
information. We exemplify again using the first s complex of CH31 in a primitive 
Cmy point group. In this instance we find the spectra shown in Figs. 8 and 9 [25]. 
The MCD signal is [25] 

(21) 

where A denotes absorptivity, the superscripts H and 0 denote the presence or 
absence of the field B and the subscripts + and - denote right circularly polarized 
light and left circularly polarized light respectively. Since the ground state lJZ+ 
possesses no angular momentum and therefore u is proportional to & of the 
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Fig. 8. Absorption spectra A*, MCD spectra dAH and derivative spectra dA*/dS of CHJ in the 
6s Rydberg complex. 

Fig. 9. Absorption spectra R*, MCD spectra dA H and derivative spectra dA*/dB of CD31 in the 
6s Rydberg complex. 

excited state p, the derivative component of eqn. (2 1) will be large when ,L+ is 
large and absent whenpB is zero. The second term in eqn. (21), attributable to 
field-induced mixing, is usually small and will only be important when a is zero. 
The relevant factors are that a derivative signal (+ or - phase) denotes an ex- 
cited state magnetic moment whose size,pus = -(AC + 2Z, + A + &)fi-lpBOh, 
in (52,~) coupling, is proportional to signal height and that an absorptive-type 
signal (+ or - phase) denotes an excited state with zero magnetic moment. 

The experimental magnetic moments of states 1, 2, 3 and 4, as evaluated 
[25] from the data of Figs. 8 and 9, are 1, O-33,0 and 0.27, whereas those ob- 
tained using the,uus expression given above are 1, 0.33, 0 and 0.33, in excellent 
agreement with experiment. A great deal of other information is contained in the 
phasing and is discussed in refs. 25 and 26. 

The quadratic field effect, attributable to diamagnetism, is usually very 
small. However, since the diamagnetic interactions are proportional to the Ryd- 
berg cross-sectional area, they increase as v4 whereas the electrostatic binding 
energies decrease as v -‘. Thus the ratio of magnetic energy to electrostatic bind- 
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ing energy increases as y6 and at n = 30, for example, is about 10’ times larger 
than for n = 1. In this case the quadratic field effect not only dominates the Zee- 
man effect but also overwhelms the electrostatic binding energy and converts the 
system into a “magnetic system”. Quadratic field effects have been observed in 
atoms [27, 281 and although a thorough understanding is elusive it appears to be 
nascent. We [29] have searched CH31 and C6H6 for quadratic field effects in the 
vicinities of both I1 and 12. Although distinct field perturbations were evident [29], 
no behavior reminiscent of a magnetic system was observed. The doublet inten- 
sification observed [29] at n = I5 in CH31 is probably a ]dJ 1 = 2 field-induced 
mixing of the s+l type. 

5.2. Electric field effeccts 
The investigation of molecules in strong external electric fields, while bur- 

geoning [30], is still in its infancy. The goad for research is provided by the de- 
velopment of focused pulsed laser systems with power densities in the gigawatts 
per square centimeter range which are strong enough to produce massive distor- 
tions of molecular electronic charge distributions. The Rydberg regime provides 
a facile means of performing such “high field” investigations. Since the mean 
Coulomb field of a Rydberg molecule is eZ/{r’) a v4 it follows that even a 
very weak field can induce field ionization at large n values. Furthermore, since 
level densities increase as y5, it follows that weak-field-induced mixings and hence 
massive non-Iinearities can occur in high n Rydberg states. Unfortunately, few 
or no investigations of high n molecular states are known. Indeed, the little vacu- 
um UV work known [24, 3 1, 321 is mostly concerned with state identifications. 

The electron of a hydrogenic system in a static electric field finds itself in 
the potential 

v(r)=-+ +E*r (22) 

The effect of the term HE = E *r is to couple the discrete states of the field-free 
atom, producing changes in the atom structure (i.e. Stark effects). However, it 
can also produce discrete state-continuum coupling, leading to field ionization 
and to a real alteration in the ionization limit. The situation in a molecule is very 
different from that in the atom: the molecule possesses dipole moments, different 
in both ground (unprimed) and excited (primed) states, which the atom does 
ndt. Thus, if we define D = p -,u’, asserting that both dipole moments are either 
parallel or antiparallel to the principal molecular axis (which itself lies at an angle 
6toE)andifwedefineb =a - Q ’ where a is a mean isotropic polarizability, we 
can write [3 l] 

(23) 

The total effects are considerably more complex than that implied above. Yet, 
as far as we are concerned, eqn. (23) contains the essence of our interests. Thus 
the Stark effect measurements (low n or low field) provide a way of measuring 
,u’, and the effect of measurements at high n, quadratic because a’ varies as @, 
will yield a measure of a ‘. 
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Again, because of bandwidth problems, the measurement of molecular 
Stark effects usually devolves on the detection of band shape alterations. An 
applicable method has been discussed [24] and a few examples [31,32] of its 
use are available. Briefly, the experimental format known as electric linear di- 
chroism is preferable. If the electric vector E of the incident light wave is plane 
polarized and at an angle p to the external electric field E (which in turn is per- 
pendicular to the direction of light incidence), the field-on-field-off absorbance 
difference is [24] 

AA Es (Go) = A Es (Yo) - A"(Po) 

This expression is obviously more complex than that in the magnetic field case 
primarily because of the presence of the second derivative. Expressions for the 
parameters C1, C2 and C3 are available [24] in terms of dipole moments, polar- 
izability tensor components and field-induced mixing coefficients, and experi- 
mental means of extracting them are known. 

6. Rydberg series in the condensed phase 

It is impossible to discuss molecular R series in solution without an under- 
standing of them in the gas phase. Unfortunately, our understanding of gas phase 
behavior is not very good and for that reason we feel compelled to initiate our 
discussion of the condensed phase by a retreat to the gaseous phase. 

6.1. Gas phase 
In the vapor, molecules may exhibit the following characteristics: (i) a well- 

developed R series, almost hydrogen like in that the intensity decreases as l/v3; 
(ii) a well-developed R series but with maximum intensity at intermediate values 
of n; (iii) a collapsed R series, often with only the lowest energy member observ- 
able (e.g. the lowest R (s) transitions in HzO, amides, saturated hydrocarbons 
etc. which may be referred to, facetiously perhaps, as “virgin Rydbergs”, char- 
acterized usually by being anomalously broad, intense and quantum defect deviant 
[33]); (iv) a series such as (i) or (ii) but with an anomalous quantum defect 
for the first few members [34] (see, for example, our discussion of SQDT). 

Rydberg series may, of course, exhibit many perturbations, the recognition 
and identification of which has been the content of Sections 3 and 4. Now we 
concern ourselves primarily with the series characteristics (i) - (iv). It seems to 
us that the only model capable of rationalizing items (ii) - (iv) is a double-well 
model (Fig. 10). 



IW CB ow 

r 
0 

Fig. 10. A model double-well potential: IW, inner well; CB, centrifugal barrier; OW, outer well. 

For atomic Rs, V(r) is a monotonically increasing negative-definite func- 
tion of r. However, the effective potential 

Veff(r) = V(r) + 
l(Z + 1) 

r2 

is monotonic only for s waves. For 1 waves, I + 0, Verr (r) is generally double welled 
and exhibits a centrifugal barrier such that the bound states may be approximate 
eigenstates of either the inner well (IW) or the outer well (OW). The barrier 
controls the finite number of bound states, some perhaps resonant, which can be 
sustained in the IW. The OW potential is asymptotically hydrogenic and it sus- 
tains an infinite number of R states. 

For molecular Rs, since V,(I) is short ranged, the effective potential is 
essentially spherically symmetric at large r. At small r, however, the effects of 
V,(r) are drastic. From an atomic point of view the imposition of V,(P) on 
an atomic potential is a breaking of symmetry of the sphere group. Retaining 
V&r) = Veti( the result is the induction of 1 wave mixing in a spherically sym- 
me*c potential. Thus, even for a parental s wave, the effective potential for a 
molecule will be of the double-well form but the barrier may be negative definite: 
V,,(r) may be a double-well potential for molecular R states regardless of the 
parental I value. As for atoms, the nature of the barrier determines the number 
of bound levels in the IW and, more importantly, the localization of wave ampli- 
tude in either the IW or the OW regions. 

We now attempt to rationalize the gas phase characteristics. In order to do 
so, we note that the initiating orbital in the absorptive event is largely confined 
in the IW and, consequently, that only those terminal R orbitals with some IW 
amplitude will couple optically to the ground state. In this view, then, rationaliza- 
tion proceeds as follows: (i) the centrifugal barrier (CB) is either very weak or 
absent; (ii) the barrier is weak and narrow and, while the IW cannot sustain 
even one bound level, all levels are bimodal (i.e. possess IW and OW amplitude) 
and the bimodal IW component maximizes at intermediate n; (iii) one or more 
levels can be sustained in the IW, the barrier being such that all eigenfunctions 
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are either wholly IW or wholly OW and that little bimodality (i.e. mixing) occurs; 
(iv) there is always a bimodal component in the first s R member. 

6.2. Condensed phase 
Consider now a molecule-doped insulator, liquid or solid. The dopant mole 

cules exhibit the following behavior forming the condensed phase: (v) virgin R 
states (see (iii) above) remain largely unaffected [33]; (vi) total quenching of 
R series (see (i) above) is common [34,35]; (vii) a Wannier exciton behavior 
results and a few members of the exciton R series are observed in some instances 
[36]; (viii) anions which do not support any bound excited states in the gas phase 
may do so in the condensed phase (some of these states may be resonant and 
may lead to electron transfer (i.e. CITS [37]) phenomena in aqueous solutions 
and single-crystal hosts [33]). 

The alterations in V,,(r) caused by condensation of the guest into a con- 
densed insulator host are as follows. To first order, V,ti(r) remains unaffected by 
the crystal field of the host at small r; at large r the conduction band of the host 
will dominate V& (r) so that 

i% 1(dopant) = Efconduction band) 

and at intermediate r further substructure (i.e. negative-definite barriers) may 
or may not appear in the OW region. If the dopant is a charged entity such as an 
anion, the resulting host-guest interactions become so drastic that even the IW 
region is grossly altered [38]. Indeed, in this case the deepening of the IW may 
support bound states and, if substructure appears in the intermediate r region, 
some of these states may become resonant (i.e. may autoionize to the host con- 
duction band). The behavioral characteristics (v) - (viii), then, are rationalized 
as follows: (v) these states, already localized in the IW, remain largely unaffected 
by the environment; (vi) the host conduction band must lie near or below the 
first R series member and V,,(r) substructure in the OW region must be mini- 
mal; (vii) the host conduction band must lie above the first few R series mem- 
bers and/or a large substructure of V&(r) must occur in the OW region; (viii) 
the events already discussed for a monopoIar dopant must occur. 

7. Conclusions 

We have tried to assess the Rydberg area of molecular electronic structure 
and interactions in the frame of modern atomic physics, building on the appro- 
priate molecular extensions where needed. In the course of this effort it became 
totally obvious that the chemical literature is not only not keeping pace with the 
rapidly advancing area of atomic physics but that it is also losing ground in molec- 
ular physics. We believe this to be most unfortunate because it puts the chemist 
at a distance from the cutting edge of his subject. As examples we note that prog- 
ress in high energy chemistry is tied in a large measure to our understanding of 
R states; rare gas chemistry, a rather startling discovery in the first place, may 
well rely heavily on Feschbach resonances, and much preparative chemistry may 
well require CTT’S intermediates. 
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